While previous presentations (Garrison et al., ASH, 2021) focused on the performance of individual CAR NK cell therapy, the current presentation focuses on a single gene circuit. SENTI-grim prognosis and a high unmet need. There are no approved cell therapies for patients with AML due to paucity of targets and a minimal window of opportunity. SENTI-grim prognosis and a high unmet need. There are no approved cell therapies for patients with AML due to paucity of targets and a minimal window of opportunity.

Potential Need for NOT GATE for Increased Healthy HSC Protection

HSCs Express FLT3

<table>
<thead>
<tr>
<th>FLT3 Expression</th>
<th>HSCs Express FLT3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>100</td>
</tr>
<tr>
<td>High</td>
<td>40</td>
</tr>
</tbody>
</table>

SENTI-202 Inhibitory CAR Design and Function

Potential Need for NOT GATE for Increased Healthy HSC Protection

In Vivo: SENTI-202 ICAR Protects Healthy Human HSCs from aCAR-Mediated Killing

Summary

SENTI-202, a proof-of-concept off-the-shelf CAR NK cell therapy, is engineered with a CD33 or FLT3 INHIBITORY gene circuit and NK-1 for the treatment of patients with hematologic malignancies, including AML. SENTI-202 has demonstrated:

- Significance in vitro and in vivo anti-tumor activity against AML and myelodysplastic syndromes.
- Significance in vivo inhibition of CD33+ FLT3+ AML blasts and healthy cells.
- Significance in vivo protection of AML and healthy cells from both aCAR and iCAR.
- Significance in vivo protection of AML and healthy cells from both aCAR and iCAR.

Clinical evaluation of SENTI-202 is planned (in progress) to evaluate the safety and efficacy in patients with hematologic malignancies and high unmet need.