

First-In-Human, Multicenter Study of SENTI-202, a CD33/FLT3 Selective Off-the-Shelf Logic Gated CAR NK Cell Therapy in Hematologic Malignancies including AML: Correlative Data

Muharrem Muftuoglu^{1*}, Enping Hong^{2*}, Stephen A. Strickland³, Alireza Eghtedar⁴, Gary Schiller⁵, Nosha Farhadfar⁶, Ashish R. Bajel⁷, Farhad Ravandi¹, Mahesh Basyal¹, Li Li¹, Lawrence Naitmazi², Rochelle Emery², Brian S. Garrison², Timothy Lu², Kanya Rajangam², Michael Andreeff¹

* Denotes co-authorship. ¹The University of Texas M.D. Anderson Cancer Center, Houston, TX, ²Senti Biosciences, Inc, South San Francisco, CA, ³SCRI at TriStar Centennial, Nashville, TN, ⁴Colorado Blood Cancer Institute, Denver, CO, ⁵David Geffen School of Medicine at UCLA, Los Angeles, CA, ⁶Sarah Cannon Transplant and Cellular Therapy Program at Methodist Hospital San Antonio, TX, ⁷Peter MacCallum Cancer Centre, Melbourne, Australia

BACKGROUND

Subject 7 1Bx5	Subject 6 1.5Bx3 (Prelim. RP2D)	Subject 8 1Bx5	Subject 9 1Bx5	Subject 3 1Bx3
ILFS	SD	TBD- continuing Rx after SD / Cycle 1	TBD- continuing Rx after SD / Cycle 1	PD
B1, NRAS, KRAS, TA2, t(I;16)(q21,q22)	RPN1:MECOM, paracentric inversion of chromosome 3, GATA2, NRAS, WT1	RUNX1, NF1, 46,XY,t(4;17)(q31;q11.2)	TET2, FLT3-ITD, SRSF2, KRAS, ASXL1, RUNX1, SETBP1	loss of 3q, 5q, 7q; DNMT3A, KRAS, TP53
TA2, SF3B1, 3)(q21q26.2), (1;16)(q10;p10),	46,XY,inv(3)(q21q26.2), GATA2, NRAS, WT1	RUNX1, IKZF1, 46,XY,t(4;17)(q31;q11.2)	ASXL1, CBL, FLT3, RUNX1, SETBP1, SRSF2, TET2, del(7)(p14p12)/46	CBL, DNMT3A, KRAS, TP53, loss of 5q, 7q.
e: Positive TOF: 62.3%	Site: 88.7% CyTOF: 28.1%	Site: 98.5% CyTOF: 72.9%	Site: 78.5% CyTOF: 73.1%	Site: Positive CyTOF: 97.1%
/TOF: 0.4%	CyTOF: 2.7%	CyTOF: 2.1%	CyTOF: 1.9%	CyTOF: 0.1%
I-202 I reatment				
e e e e e e e e e e e e e e e e e e e	* * * * * * * * * * * * * * * * * * *		* · · · · · · · · · · · · · · · · · · ·
			_	

а		Imm
	Subject 1	C1 D0 C1 D28 C2 D0 C2 D28
cCD.	Subject 2	C1 D0 C1 D28 C2 D0 C2 D28
CCR	Subject 4 [*]	⁶ C1 D0 C1 D28
	Subject 5 [*]	C1 D0 C1 D28 C2 D0 C2 D28
ORR	Subject 7	C1 D0 C1 D28
SD	Subject 6 [*]	C1 D0 C1 D28 C2 D0 C2 D28
	Subject 8	C1 D0 C1 D28
	Subject 9	C1 D0 C1 D28
PD	Subject 3	C1 D0 C1 D28
;	* Preliminary RP2D coho	rt

(c) T cells, (d) NK cells, and (e) B cells are shown over each treatment cycle are shown for all subjects. EOT, end of treatment

SUMMARY

- In subjects achieving cCR:

ACKNOWLEDGEMENTS

The authors would like to thank all patients, their families, and caregivers for their participation in this study, as well as clinical and research staff at all participating institutions. Pharmacokinetics assessment was performed by Charles River Laboratories, and pharmacometrics support was provided by Certara.

THE UNIVERSITY OF TEXAS MDAnderson **Cancer** Center

Making Cancer History[®]

AACR 2025

Analysis of HSPCs and hematopoietic differentiation in the bone marrow of trial subjects. (a) HSPCs were identified as CD34+CD38-/low hematopoietic cells, and the proportion of HSPCs in responder bone marrow was either increased or maintained during SENTI-202 treatment. (b) CyTOF analysis identified cell populations in the classical hematopoietic differentiation hierarchy in healthy and diseased samples. Representative analysis was performed on responder subjects 1 and 2, showing that (c) EMCN+ hematopoietic populations (blue contours) were retained after SENTI-202 treatment. (d) UMAP analysis of subjects 1 and 2 showed the preservation of hematopoietic trajectories in responders, with progenitor cell types enriched at baseline and more differentiated populations appearing after treatment.

HSPC-Driven Immune Repopulation in Peripheral Blood after SENTI-202 Treatment

AML blast reduction was observed in a majority of subjects. 5/7 subjects evaluable for best overall response had blast reduction by CyTOF consistent with clinical response of CR or CRh (composite CR or cCR) or MLFS. 4/4 cCR patients were MRD- as assessed locally, 2/3 in preliminary RP2D cohort.

SENTI-202 was detected in all treated subjects, with comparable PK to other CAR NK cell therapies.

AML in subjects enrolled on the SENTI-202-101 clinical trial was proteomically and mutationally heterogenous, with a unique genetic and proteomic signature for each subject. All subjects expressed CD33 (range 28-99%), and 3/4 cCR subjects expressed FLT3 (range 5-46%). Most LSCs were in G0/G1 at baseline and were not expected to be eliminated by Flu/Ara-C.

A >10-fold decrease in LSCs was observed

HSPCs were either increased or maintained after SENTI-202 treatment. EMCN⁺ HSPCs were detectable throughout treatment and differentiated into normal hematopoietic lineages during response. Multiple immune populations were increased in peripheral blood after SENTI-202 treatment.

Correlative data collected during the SENTI-202-101 clinical trial affirms the anti-leukemic effects of SENTI-202 in responders, as well as the repopulation of immune cell subpopulations post-treatment. The observed effects are consistent with the pharmacodynamic action of the Logic Gate in SENTI-202 in sparing EMCN⁺ HSPCs while selectively killing CD33⁺ and/or FLT3⁺ AML tumor cells.

> SENTI BIOSCIENCES, CONTACT email: <u>kanya.rajangam@sentibio.com</u>